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The effects of viscosity and heat conduction on the propagation of internal gravity 
waves are examined. These waves propagate in a stably stratified, parallel shear flow 
with one critical level. The Boussinesq approximation is adopted. For large Reynolds 
number the governing sixth-order differential equation is solved by analytical 
methods. In  the limit of large Reynolds number it is found that the reflection and 
transmission coefficients for a wave incident in a viscous fluid are the same as in the 
inviscid case. Hence over-reflection can also occur in a viscous fluid. For the perturbed 
velocity components at the critical level, asymptotic expressions are derived. The 
results we obtain are valid for smooth, but otherwise arbitrary, shear-flow and density 
profiles. 

1. Introduction 
In the inviscid theory of linear internal gravity waves the differential equation for 

the vertical velocity is of second order. The presence of a stratified, parallel shear flon- 
causes this equation to possess a singularity at  any critical level, i.e. at  any level where 
the shear-flow velocity is equal to the horizontal phase velocity of the wave. At this 
level the Reynolds stress is discontinuous (Eliassen & Palm 1961). Another important 
aspect of the inviscid theory is the occurrence of over-reflection, which means that 
the amplitude of the reflected wave exceeds that of the incident one (see, e.g.. Jones 
1968; McKenzie 1972; Eltayeb & McKenzie 1975; and Van Duin & Kelder 1982). -1 
necessary condition for the occurrence of this phenomenon is that the Richardson 
number at the critical level is sufficiently small. For an ample discussion on 
over-reflection the reader is referred to Acheson (1976). 

It should be noted that nonlinearity may become important in the vicinity of the 
critical level. Brown & Stewartson (l980,1982a, b )  examined the nonlinear interaction 
of the internal gravity wave with its critical level for large values of a representative 
Richardson number. They have shown that, however small the amplitude of the 
forced wave may be, the linear steady model breaks down on a timescale that is 
inversely proportional to the amplitude of the wave. On a larger timescale the 
reflection and transmission coefficients change. These authors excluded the effects of 
viscosity and heat conduction. The mechanism of the combined effects of dissipation 
and nonlinearity is not yet well understood. 

It is the aim of this paper to examine the effects of viscosity and heat conduction 
on the propagation of linear internal gravity waves. When t,hese effects are taken into 
account, the governing differential equation is of sixth order (Koppel 1964: Hazel 
1967; Baldwin & Roberts 1970). The Reynolds stress is now a continuous function 
of height because the singularity at the critical level is removed. In the limit of large 
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Reynolds number various aspects of the inviscid theory are recovered, including the 
possible occurrence of over-reflection. The Boussinesq approximation is adopted and 
we will be concerned with the presence of one critical level. 

The situation as described by this steady model will persist for a certain period 
of time (when the effect of the transient phenomenon has been damped out) until 
the nonlinear terms ultimately become important, and it is expected that viscosity 
and heat conduction will delay the moment at which these terms can no longer be 
neglected. It is of interest to refer to a paper by Tung, KO & Chang (1981). These 
authors derived a measure of the relative importance of viscosity as compared with 
nonlinear effects. They found that it can be characterized by a single parameter. Large 
values of this parameter indicate that viscosity dominates nonlinearity. 

It is assumed that the dissipation results from molecular viscosity and heat 
conduction. For the thermosphere this appears to be a reasonable approximation (see, 
e.g. Gossard & Hooke 1975; Fritts & Geller 1976; Gill 1982). For waves with a small 
amplitude, Fritts & Geller (1976) found a stabilizing effect of molecular dissipation 
near the critical level. When the amplitude of the incident wave is sufficiently large, 
however, convective instability can be induced (Fritts & Geller 1976; Fritts 1982). 
Another effect limiting the wave amplitude is the transfer of energy to other scales 
by parametric instability (see, e.g. Mied 1976; Drazin 1977; Grimshaw 1980). For the 
latter mechanism the growth rates of the unstable modes increase with the amplitude 
of the incident wave. 

In  $2 the problem is posed. In $3 the method of matched asymptotic expansions 
is used to find the common region of validity of the so-called outer and inner solutions 
of the governing equation. This method also allows the construction of a uniformly 
valid approximation to the solution of this equation ($4). Results based on the 
analytical solution of the governing equation are also discussed in that section. It 
is remarked that extensive use is made of a paper by Baldwin & Roberts (1970). 

2. The problem 
We consider a viscous and heat conducting fluid with a parallel shear flow 

U = U(y)i, where i is the unit vector parallel to the x-axis of a Cartesian coordinate 
system. The y-axis is taken to be parallel to the vertical direction and increasing y 
corresponds to increasing height. The fluid is stratified and incompressible. The 
undisturbed density po depends on y only and the stratification is stable, i.e. 
dp,/dy < 0. The Brunt-Viiisiilii frequency N is defined by P ( y )  = -gp;’(dp,/dy), 
where g is the gravitational acceleration. We further adopt the Boussinesq approxi- 
mation. The perturbation quantities have a dependence on 5 and t of the form 
exp {ia(x-ct)}, where a and care the horizontal wavenumber and the horizontal phase 
velocity, respectively. Only real values of c are considered. The equation for the 
vertical component 9 of the velocity (Baldwin & Roberts 1970) reads 

where D = d/dy, v is the kinematic viscosity and x the thermal conductivity. The 
prime has the same meaning as D. 

It is assumed that c lies in the range of U and that there is only one point, y = yc, 
where U = c. Furthermore, the slope of the shear flow at y = yc is taken positive. The 
point y = yc is called the critical point. The name critical level is also common. We 
consider smooth but otherwise arbitrary velocity and density profiles U(y) and po(y). 
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The Richardson number a t  the critical level is defined by 

J = & J  
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where the subscript c means evaluation at y = yc. 

the dimensionless form 
Introducing L and V as the scales of length and velocity, (2.1) can be written in 

[D2-a2-iaRP(U-c)][{D2-a2-iaR(U-c)}(D2-a2) $+iaRU”$] = (a2R2PRi)q5, 
(2.3) 

where 

Here R and P denote the Reynolds and Prandtl numbers. The overall Richardson 
number Ri depends on y because the Brunt-Vaisala frequency N depends on this 
coordinate. 

In the formal limit as R +- 00, with fixed y =+ yc, (2.3) reduces to the Taylol-Goldstein 
equation Ri 

It is assumed that the Reynolds number R is so large that, near the critical level, 
viscosity and heat conduction are only important in a narrow region near this level. 
In the outer regions, i.e. the regions away from the critical level, (2.3) may then be 
approximated by (2.5), because in these regions the fluid may be considered as 
inviscid. To find the connection between the solutions of (2.5) in the disjoint outer 
regions, the method of matched asymptotic expansions will be used. This method also 
allows the construction of a uniformly valid approximation to the solution of (2.3). 
The results to be derived are valid in the limit of vanishing viscosity and heat 
conduction (R + a, P fixed). 

We note in passing that in the derivation of (2.1) it  is supposed that all undisturbed 
quantities vary with height only. As Jones (1985) remarked, the undisturbed 
temperature should then be a linear function of height to satisfy the equation of heat 
transfer. Likewise, the shear flow should then vary linearly with height to satisfy the 
Navier-Stokes equation. In the limit of vanishing viscosity and heat conduction, 
however, the undisturbed quantities necessarily depend on height only. Moreover, 
U(y) and N ( y )  may be arbitrary functions of height in this limit. 

3. The outer and inner solutions, matching 
For an inviscid, Boussinesq fluid the Taylor-Goldstein equation (2.5) is the model 

equation for the propagation of internal gravity waves. The solution of this ‘inviscid’ 
equation, which will be called the inviscid solution (denoted by &Jy)), is of the form 

$inv(Y) = A$,(Y) +B$~(Y), (3.1) 
where q51(y) and $2(y) are the Frobenius solutions about y = yc: 

(3.2b) 

A and B are constants and 
(3.3) 
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It is remarked that for J = a one of the Frobenius solutions of (2 .5)  has a logarithmic 
singularity at y = y,. This special value of J will be excluded because the results to 
be derived can easily be extended to the case J = a ,  without recourse to the 
logarithmic solution. 

To make the solutions (3 .2a ,  b )  one-valued, one has to introduce a branch cut in 
the complex y-plane. This cut should be made upwards, hence arg (y - y,) = - x for 
y < ye. This choice has been motivated by Booker & Bretherton (1967) and by 
Baldwin & Roberts (1970).  

When viscosity and heat conduction are included, the Taylor-Goldstein equation 
(2 .5)  is the limit equation of (2 .3) ,  i.e. for fixed y =# y,, (2 .3)  reduces to (2 .5)  as R +  CO. 

The solution of (2 .5)  is called the outer solution in this case and will be denoted by 
$,(y) instead of $i,,v(y). When we substitute the asymptotic expansion 

$(y) = $(O)(y) + R-l$(')(y) + R-'$(')(y) + . . . , (3 .4)  

into (2 .3) ,  i t  is found that #O)(y) is a solution of (2 .5) .  Thus the outer solution $,(y) 
is the first term in the expansion (3 .4) .  Hence, for fixed y + yc it is the leading-order 
approximation to $(y). 

In  the outer regions y < yc and y > y,, $,(y) is a linear combination of the functions 
(3 .2a,  b ) .  Since the outer regions are separated by a thin boundary layer or viscous 
layer, however, one might expect that  the outer solution takes the form 

(3 .5a)  

(3 .5b)  

instead of the form (3 .1)  for the inviscid solution. A* an'd B* are constants. For later 
use the leading-order behaviour of the outer solution near the critical level is given, 
namely 

A+(y-yc):+P+B+(y-yc):-p as y.l yc, (3 .6a)  

- iApe-iP"(y, - y)i+P - iB-eiP (Yc-Y)i-p (3.6b) as y f  y,. 

Substituting the new variable, 

7 = (iaRU;)i (y-ye), (3 .7)  

into (2 .3) ,  i t  is found that in the formal limit as R +  CO, with 7 fixed, the resulting 
equation (with 7 as the independent variable) reduces to the limit equation 

(3 .8)  

Apparently the thickness of the boundary layer is of order R-i. In this layer the 
solution of (3 .8) ,  known as the (leading-order) inner solution, is valid as an 
approximation to the solution of (2 .3) .  It should be noted that the solution of (3 .8)  
is the first term in an asymptotic expansion of the form (3 .4) ,  with y and R replaced 
by 1;1 and @, respectively. 

To obtain a single uniform approximation, the inner solution should be matched 
with the outer solution. Then the ratios A+/A- and B+/B- in (3 .5)  are determined 
and, consequently, the connection between the solutions in the disjoint outer regions 
is made. 
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FIGURE 1. Contours C, for the functions u3(v) and v3(v) as defined by (3.9). (After Baldwin t 
Roberts 1970.) 

3.1. Matching 
Baldwin 6 Roberts (1970; hereinafter referred to as BR), constructed a base of 
solutions of (3.8). For P + 1, three of these solutions are given by (see the formula 
(4.3) in their paper), 

u,(r]) = ~c ,e~s~8af(s )d' - lds  (i = 1,2,3), (3.9) 

where f ( ~ )  = ,F,(;+).; 1 + + ; : ( 1 - ~ 1 ) 8 3 ) ,  

is the confluent hypergeometric function and 

l(a-J)+, (J  < a,, 
ia, a = (J -$  ( J >  a). .={ 

(3.10) 

(3.11) 
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The contours Cj are sketched in figure 1.  The remaining three solutions, denoted by 
v,(q), are obtained by replacing p by -p.  It is remarked that BR use the symbols 
z and m instead of q and p, where p = 3m. The inner solution, denoted by $i(q), is 

$i(q) = E { a j U j ( T )  +Pjvj(q)l, (3.12) 
of the form 3 

j - 1  

where a, and /3, are constants to be determined by matching. 
We now introduce the so-called intermediate variable (Kevorkian & Cole 1981 

chapter 2) 
Y-Yc 

C=E(R), (3.13) 

for real and positive functions B(R) that are contained in the class 

RJ = o(e(R)),  e(R) = o(1) as B+ co. (3.14a, b )  

With the aid of (3.13) and (3.14) the size of the overlap domain (i.e. a common region 
of validity of the inner and outer solutions) can be found from the matching principle 

$i(q) - {$,(Y) -1 asR-tm,  <fixed, (3.15) 

where {$,(y) -} is the asymptotic behaviour of $,(y) = $,(y, + €5) as R+ co for fixed 
g. For 5 > 0 (or 5 < 0) this corresponds to the behaviour of $,(y) as y$yC (or y t  y,), 
cf. (3.13) and (3.14b). Hence (3.15) implies that, for fixed 5, ayd as R+m, 

cf. (3.6). From (3.7) and ( 3 . 1 4 ~ )  i t  follows that Jql+co as R+m. In other words, 
to match the inner solution (3:12) with the outer solution (3.5), the behaviour of (3.12) 
as 7 +. f co exp (+in) has to be known. The factor exp (tin) arises because, in view of 
(3.7), 7 is complex for real y. The asymptotic expressions for uj(q)  and v j (q)  are listed 
in tables 1 and 2 in BR. Only the sectors and T, in these tables are of interest here. 
It should be noted that these results are only valid for P + 1.  The case P = 1 has been 
discussed by Koppel (1964) and by Gage & Reid (1968). 

It turns out that only the solutions u3(q) and w3(q) can be matched with the outer 
solution, because two of the remaining solutions tend exponentially to infinity for 
6 > 0 (corresponding to Re(q)+. co), where Re denotes the real part, and the other 
two have this behaviour for g <  0 (Re(q)+-co). Therefore we must take 
a, = az = PI = P2 = 0 and, consequently, (3.12) reduces to 

$i(V) = a3 u3(7) + P 3  v3(7). (3.17) 

For J < f the asymptotic behaviour of u3(q)  as R+ 00 (with < fixed) is of the form 
(BR) 

where ,u is given by (3.11). The asymptotic behaviour of w8(q) may be obtained by 
replacing ,u by -,u in (3.18). For J > a, p must be replaced by ia, where n is defined 
by (3.11). 
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Combining (3.16), (3.17) and (3.18) gives 

(3.20 a) 

(3.20 b )  

The result (3.19) implies that  the outer solution (3.5) reduces to  

#o(Y) = A+#l(Y)+B+#,(Y). (3.21) 

It is therefore of the same form as the inviscid solution (3.1). When A+ and B+ are 
known, the coefficients a3 and p3 in the inner solution (3.17) are determined by (3.20). 

Finally, it should be noted that (3.15) is an  extension of Prandtl’s matching 
principle (Nayfeh 1973). Both principles require that the behaviours of the inner 
solution as r]+f co exp (ix/6) and the outer solution as y +  y: are in agreement. 
Using Prandtl’s matching principle, however, it is not possible to find an  overlap 
domain for matching. On the other hand, from (3.13)-(3.15) it  follows that there 
exists such a domain. The size of i t  is found to  be R-f 4 y- yc 4 1 as R+ co, where 
the symbol 4 is used instead of the small-o symbol. 

4. Results 
A uniformly valid leading-order approximation to  the solution #(y) of (2.3) is 

obtained by adding the inner and outer solutions (3.17) and (3.21) together and 
subtracting the common part. The common part (cp) consists of the common terms 
in (3.17) and (3.21) that  cancel out in the matching. Thus, the uniformly valid first 
approximation is of the form 

# u n ( ~ )  = #i (V)  + #o(y) -CP. (4.1) 

cp = A+(y-yc)i+p+ B+(y-y,):-p. (4.2) 

The common part is given by 

The difference $(y) -$,,(y) is uniformly o( 1) as R+ 00 on every closed interval [y,, y,]. 
I n  a narrow region near the critical level the inner solution (3.17) is valid as an 

approximation to  the solution #(y) of (2.3). It is recalled that this approximation to  
the perturbed vertical velocity, obtained by leading-order matching, could only be 
constructed by discarding four of the six solutions in the general expression (3.12). 
Away from the critical level the outer solution (3.21) is valid as an approximation 
in the sense that, for every fixed y + yc, 

#(Y)-#o(Y) = 4 1 )  as R - t w ,  (4.3) 

because the result 

(4.4a, b )  

(fixed y + y,) implies that the inner solution minus thc common part in thc expansion 
(4.1) vanishes as H+ 00. 
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4.1. Uniform validity of the outer limit 
Hazel (1967) derived asymptotic expansions for the six solutions of (3.8), valid for 
P += 1 and J > f (see his formulae (2.1)-(2.6)). Combining these results with those 
derived in BR gives the expressions 

(4.5a) 

(4.5b) 

valid as q+co exp(iin); a is defined by (3.11). From (3.7), (3.17), (3.20), (4.2) and 
(4.5) it then follows that 

(4.6) 

which implies that  g5i(y)-cp = o(1) as R+co, (4.7) 

+i(7) - cp = O(q+)  as 7 + 00 exp (six), 

uniformly for y 2 y1 > ye. The asymptotic relation, 

+W-+u*(Y)  = 4 1 )  as R+ 00, (4.8) 

is uniformly valid on every closed interval on the y-axis. Combining the results (4.1), 
(4.7) and (4.8) it is then found that (4.3) is uniformly valid for y1 < y < y2, where 
y1 > yc. In a similar manner i t  can be proven that this is also true for every closed 
interval [yl, yz] below the critical level, namely yz < yc. If the parameter ia in (4.5) is 
replaced by p as give by (3.11), this result can be extended to  be valid for all J =+ a. 

In  conclusion it is observed that for P =+ 1 and J + a, (4.3) is uniformly valid on 
every closed interval [y,,y2] below or above the critical level. This result will be 
applied in the next subsection. 

4.2. Reflection and transmission coeficients 
Assuming that the Reynolds number is large, the effect of viscosity is only important 
in a narrow region near the critical level and in regions far away from this level. In 
the latter regions the effect of viscosity is cumulative, i.e. i t  causes the wave to  vanish 
a s y + + c o .  

In  the homogeneous regions Iy-ycI % 1 the imaginary part of the vertical 
wavenumber is of order R-' as R+ 00. Consequently, when a wave propagates from 
the region 1 4 yc - y 4 R below the critical level to the region 1 4 y- yc + Rabove this 
level or vice versa, the cumulative effect of viscosity on the amplitude of the wave 
is negligible in the limit of large Reynolds number. Assuming that wave propagation 
takes place in the regions 1 4 I y - yc I 4 R, the vertical wavenumbers may therefore 
be taken as real there. The real parts of these wavenumbers, denoted by k- and k+, 
are the positive roots of the equation 

Ri( & co) 
-a2, 

( k + ) 2  = (U( fco ) -C)2  (4.9) 

cf. (2.5). 
We now consider the problem of reflection and transmission of an incident wave 

propagating in t h e  positive y-direction. For reasons that have already been mentioned, 
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the reflection and transmission coefficients will be measured in the regions 
1 6 Iy-ycI + R. When the fluid is inviscid, the inviscid solution (3.1) should be 
proportional to exp (ik+y) in the homogeneous region y - y c  %- 1 because i t  should 
represent the transmitted inviscid wave there. 

For a viscous fluid it has been shown that (4.3) is uniformly valid on every closed 
interval outside the critical level. For large R the solution of (2.3) may then be 
replaced by the outer solution (3.21) on these intervals. In the region 1 4 y- yc  < R 
the outer solution should then also be proportional to exp (ik+y) because it should 
represent the transmitted viscous wave in this region. When the amplitudes of the 
transmitted inviscid and viscous waves are normalized to unity (by adjusting the 
amplitude of the incident wave), it is found that the inviscid and outer solutions are 
identical for all y > yc because both are solutions of the same equation (2.5). Hence 
A = A+, B = B+. In view of (3.19) the inviscid and outer solutions are identical for 
all y .  Then (4.3) implies that on every closed interval outside the critical level the 
solution of (2.3) is identical to the inviscid solution, at  least to the approximation 
that R-tco. 

In conclusion it is observed that in the limit as R+ co the reflection and transmission 
coeficients for a wave incident on a viscous fluid are the same as in the inviscid case. 
When the region y - y c  %- 1 is opaque, in which case there is no transmitted wave, 
the reflection coefficients for a viscous and an inviscid fluid remain of course the same. 

These results, which are valid for all J (where J is the Richardson number at the 
critical level as defined by (2.2)), agree with the numerical results derived by Hazel 
(1967). This author, however, only treated the case J > f and assumed a linear shear 
flow profile and a constant Brunt-Vaisala frequency. Moreover, only the transmission 
coefficient was considered. 

Bowman, Thomas & Thomas (1980) also solved the problem numerically (for J > 1)  
and they also assumed a linear shear flow profile and a constant Brunt-Vlisala 
frequency. They suggested that ‘the wave-amplitude attenuation factor predicted by 
the inviscid model is approached asymptotically in the limit of vanishingly small 
viscosity and thermal conductivity coefficients ’. This is precisely what has been 
shown in this paper. 

We have shown that the reflection and transmission coefficients for the inviscid 
case are good approximations to the viscous reflection and transmission coefficients 
if the Reynolds number is large. It is therefore of interest to notice that for the 
configuration 

U ( y )  = +(l+tanhy), N ( y )  = const, c = 2, (4.10) 

the reflection and transmission coefficients for a wave incident on an inviscid fluid 
can be calculated explicitly because they can be expressed in terms of r-functions 
(Van Duin & Kelder 1982). 

4.3. Behaviour of the velocity components at and near the critical level 
For internal gravity waves in an inviscid, incompressible fluid the perturbed vertical 
velocity vanishes at  the critical level. The perturbed horizontal velocity tends to 
infinity as the critical level is approached. This follows from (3.1)-(3.2) and from the 
assumption of incompressibility. This assumption implies that the perturbed 
horizontal velocity $ and the vertical velocity q5 are related according to 

ia$+Dq5 = 0. (4.11) 
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We consider next the effect of inclusion of viscosity and heat conduction on the 
velocity components. In  that case the (perturbed) vertical velocity at the critical level 
vanishes as R+ 00, because (4.1) implies that in this limit 

(4.12) 

where p and (T are given by (3.11). 
In the derivation of (4.12) it is assumed that away from the critical level (outside 

the boundary layer) the amplitude of the vertical velocity is of order unity. In  that 
case the coefficients A+ and B+ in (4.12) are of the same order of magnitude. The 
asymptotic behaviour for J = a is obtained by taking p = 0 and (T = 0 in (4.12). 

For J 2 a the rate of vanishing of the vertical velocity a t  the critical level is 
independent of J. For J < one has to distinguish between the cases B+ = 0 and 
B+ =k 0. For B+ = 0 the rate of vanishing is faster according as J is smaller. For 
B+ + 0, on the other hand, this rate is faster according as J is larger. 

Making use of (4.1) and (4.11), the behaviour as R+ co of the perturbed horizontal 
velocity at the critical level is obtained by multiplying the right-hand side of (4.12) 
by (i/a) (iaRL'h)i and replacing u3(0) and v3(0) by u;(O) and v;(O), respectively, where 
(applied to u3 and v3 only) the prime denotes differentiation with respect to 7. 

It is found that the perturbed horizontal velocity at the critical level tends to 
infinity as R+ co. For J 2 a, the rate at which this velocity (at the critical level) tends 
to infinity is independent of J. For J < a one has again to distinguish between the cases 
B+ = 0 and B+ =# 0. 

The coefficients u3(0) and v3(0) in (4.12) depend on P and J only. The same applies 
to the coefficients u;(O) and vj(0) in the asymptotic expression for the horizontal 
velocity. We will now derive closed-form expressions for u3(0), v,(O) and up)(O), vkn)(0), 
where n denotes the number of differentiations with respect to 7. In  this manner the 
Taylor expansions for u3(7) and v,(r) are also determined. We consider the coefficient 
u3(0) first. 

Jcaap-:da = 0, 
Making use of the relation 

this coefficient can be written as (cf. (3.9)), 

(e-i"*f(s) - I} #u-! ds, 

or, alternatively, 

where 

(4.13) 
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Through an integration by parts we obtain 

1 d 
P-5 0 dt 

I = - Srn e-its { V +if@) - V -t - f(t )} dt . 

303 

(4.14) 

Making use of the relation (Erddyi et al. 1953 §6.4), 

d P q ;  d = - I F , @ +  1 ; q+ 1 ; 4, 

and introducing the new variable r =  t3, the expression for u3(0) takes the form 
(ErdBlyi et al. 1953 $6.10), 

u3(0) = 2i sinxb-t)  eWj4) r($-+) 33p-P 

valid for P > 4, and 

(4 .15~)  

(4.15b) 

valid for P < 2. The parameter p is given by (3.11); the notation F stands for the 
hypergeometric function. The expression for v3(0) is obtained by replacing p by -p  
in (4.15). 

The expression for the nth derivative uin)(0) can be derived in a similar manner 
from the integral 

uin)(0) = I, etsaf(s) sn+p-t ds. 

The result reads 

valid for P > 4, and 

xF($+&;(p+n-f);++l;l-P) n 2  1, (4.16b) 

valid for P < 2. The expression for vp)(O) is obtained by changing the sign of p in 
(4.16). From (4.15) and (4.16) the Taylor expansions of u3(q) and v3(q) around 7 = 0 
can now be determined. 

It remains to determine the coefficients A+ and B+ in the asymptotic expressions 
for the perturbed velocity components at the critical level. These coefficients also 
appear in the constants ccg and pa in the inner solution (3.17), cf. (3.20). Consequently, 
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when A+ and B+ are known, a careful analysis of the behaviour of the perturbed 
vertical velocity in the viscous layer near the critical level is allowed because the inner 
solution (3.17), which governs this behaviour, is then completely determined by (4.15) 
and (4.16). 

When we consider a reflection and transmission problem, A+ and B+ are proportional 
to the amplitude of the incident wave. For the configuration (4.10), A+ and B+ are 
known: they can be expressed in terms of r-functions because (2.5) can be reduced 
to the hypergeometric equation in this case (van Duin & Kelder 1982). When the 
incident wave propagates in the positive y-direction, and the amplitude of this wave 
is normalized to  unity, they are given by 

where y = f(J-a2)i J > a’. (4.18) 

For J > f the expressions for the absolute values of A+ and B+ can be reduced to  

sinh 2xy 
l ~ + 1 2  = Y e - 4 ~  [cosh2 R( y - ia) + sinh2 n(y -+a)], (4.19~) 

u cosh2 na sinh nu 

sinh 2ny 
cosh2 nu sinh na 

l ~ + 1 2  = :e-4~ [cosh2 7c ( y + fa) + sinh2 n( y + fa )] .  (4.19 b )  

5. Discussion 
In  the limit of large Reynolds number the thickness of the viscous layer near the 

critical level becomes so small that  its effect on the global structure of the wave 
becomes negligible, with the exception, however, that in the viscous layer the actual 
form of the wave is radically altered. 

The reflection and transmission coefficients for a viscous fluid with a critical level 
are, at least to the approximation that the Reynolds number tends to infinity, the 
same as those for an inviscid fluid with a critical level. Hence over-reflection can also 
occur in a (slightly) viscous fluid provided that the Richardson number a t  the critical 
level is sufficiently small. It should be noted that this implies that the occurrence of 
over-reflection is not a result of the singularity in the inviscid Taylol-Goldstein 
equation. Moreover, to  leading order the interaction between the wave and the shear 
flow is not affected by viscosity and heat conduction. I n  cases of overlap there is 
agreement with the numerical results obtained by Hazel (1967) and by Bowman et 
al. (1980). 

The proof of the equality of the viscous and inviscid reflection and transmission 
coefficients is based on the observations that (a) the coefficients in the leading-order 
outer solution (3.5) of the governing equation are interrelated according to A- = A+ 
and B- = B+ and ( b )  that  (4.3) is uniformly valid in regions below and above the 
critical level. 

It has been shown that there is a common region of validity of the inner and outer 
solutions of the governing equation. I n  the common region the inner and outer 
solutions can be joined smoothly. It turns out that  only two of the six inner solutions 
can be matched with the outer solution. The remaining four solutions, the so-called 
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viscous solutions, should be discarded in the matching procedure. This is at variance 
with the observation of Hazel (1967) that the viscous solutions are not negligible near 
the critical level. This disagreement is due to the fact that we only made a leading-order 
matching. 

The coefficients A+ and B+ in the asymptotic expressions for the perturbed velocity 
components at the critical level can be determined by solving the Taylor-Goldstein 
equation. For the configuration (4.10) these coefficients can be expressed in terms of 
r-functions. 

It was assumed that the dissipation near the critical level results from molecular 
viscosity and heat conduction. It is tempting to assume that eddy viscosity and eddy 
conduction of heat can also properly be described by (2.1). In that case the whole 
analysis as given before can be retraced by replacing the molecular kinematic 
viscosity and the molecular thermal conductivity by their eddy counterparts. The 
eddy Prandtl number may become large (Chao & Schoeberl 1984), which may lead 
to scaling problems, but calculations for mesosphere parameters indicate that this 
is not always the case because a value of about 20 is then appropriate (Fritts 1984). 
As far as we know, however, a justification of the above assumption (in particular 
its validity near the critical level) is missing. 

Recently, Lindzen & Barker (1985) have shown that a small amount of damping 
can actually induce over-reflection in cases where it does not occur according to the 
inviscid theory. This result could be checked by performing a higher-order matching. 
The higher-order correction to the inviscid reflection coefficient should then indicate 
that a small amount of viscosity and heat conduction gives rise to a larger reflection 
coefficient. To analyse this problem in detail is beyond the scope of the present study. 
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